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This paper develops a method informed by data and models to
recover information about investor beliefs. Our approach uses
information embedded in forward-looking asset prices in conjunc-
tion with asset pricing models. We step back from presuming
rational expectations and entertain potential belief distortions
bounded by a statistical measure of discrepancy. Additionally,
our method allows for the direct use of sparse survey evidence
to make these bounds more informative. Within our framework,
market-implied beliefs may differ from those implied by rational
expectations due to behavioral/psychological biases of investors,
ambiguity aversion, or omitted permanent components to valua-
tion. Formally, we represent evidence about investor beliefs using
a nonlinear expectation function deduced using model-implied
moment conditions and bounds on statistical divergence. We
illustrate our method with a prototypical example from macro-
finance using asset market data to infer belief restrictions for
macroeconomic growth rates.

subjective beliefs | asset pricing | intertemporal divergence |
bounded rationality | large deviation theory

Prices in asset markets reflect a combination of investor beliefs
and their risk preferences. Researchers, as well as policymak-

ers, look to asset market data as a barometer of public beliefs.
Derivative claims prices potentially enrich what we can infer
about conditional probability distributions of future events, but
events of interest often entail components of macroeconomic
uncertainty for which there will be a paucity of information along
some dimensions. Moreover, since a central tenet of asset pricing
is that investors must be compensated for exposure to macroe-
conomic shocks that are not diversifiable, beliefs about future
macroeconomic performance are of paramount importance to
understanding asset prices.

To disentangle the contributions of risk aversion from beliefs,
many empirical approaches in the last few decades have focused
on models of investor preferences by assuming rational expec-
tations. Using the implied moment conditions of the investor’s
portfolio choice problem in conjunction with this restriction
gives a directly applicable and tractable approach for estimat-
ing and testing alternative model specifications. This approach,
however, often leads to risk prices in some time periods that are
attributed to an arguably extreme level of investor risk aversion
or a rejection of the model. Risk aversion and belief formula-
tion are intertwined. Rational expectation as a model of belief
formation is meant to be a simplifying approximation. It can
serve as an elegant and powerful modeling choice when appro-
priate. In a complex environment, however, it can be challenging
to make statistical inferences pertinent to forward-looking deci-
sion making. In such settings, we find the presumption that
model-dwelling investors and entrepreneurs know the true data-
generating process to be tenuous and worthy of relaxation. We
are not alone in this view.

Some researchers have explored mechanisms that could
account for this evidence via a different channel, namely beliefs
which differ from rational expectations. It is sometimes argued,
but typically not justified formally, that these alternatives are
small departures from rational expectations. These “belief dis-
tortions” relative to rational expectations alternatively could

reflect the lack of investor confidence about the assignment of
probabilities to future events. This has been modeled and cap-
tured formally as ambiguity aversion or concerns about model
misspecification.

This paper proposes a formal methodology for analyzing
models that imply conditional moment restrictions where the
restrictions are presumed to hold under a distorted probability
measure. It extends a previous econometrics literature that rep-
resents the statistical implications of asset pricing implications
as conditional moment restrictions under rational expectations.
Rational expectations on the part of individuals or enterprises
can be motivated by a law of large numbers approximation used
to pin down the beliefs of these economic agents “inside the
model.” Once we relax the rational expectations, there are typi-
cally many choices of investor beliefs that satisfy the conditional
moment restrictions. Rather than imposing a specific alternative
to rational expectations, we restrict the family of investor prob-
abilities to satisfy discrepancy bounds, which gives us a way of
relaxing the rational expectations hypothesis based on pushing
back from a law of large numbers approximation. We then use
the conditional moment restrictions along with statistical dis-
crepancy bounds, to characterize families of probabilities that
satisfy the conditional moment restrictions.

Our approach provides a version of “bounded rationality”
when assessing empirical evidence. Not only are the bounds we
deduce of direct interest; they also can be used as diagnostics
for specific models of belief distortions. Additionally, we show
how to include survey data on subjective beliefs. Such data are
typically sparse and not sufficient to pin down full probabilis-
tic characterizations of beliefs. Given these data limitations, we
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bound probabilities even when certain features of the data may
be known through direct evidence.

A common way to represent a probability distribution of a
random vector is through how it assigns expectations to func-
tions of that random vector. Since we have multiple probability
distributions in play, we represent our bounds by building what
is called a “nonlinear expectation” that minimizes expectations
over members of the family of probability distortions that we
identify. This gives us a formal way to characterize properties of
probability distributions that are consistent with model-implied
conditional moment restrictions. The choice of minimization is
essentially a normalization as we bound expectations of func-
tions of observable variables as well as the negative of such
functions. Given the flexibility in our choice of what functions of
observables we use when forming expectation bounds, our anal-
ysis provides a rich characterization of implications for the belief
distortions.

While we use asset pricing applications for motivation, our
analysis is more generally applicable to economic models with
forward-looking agents. These agents may be groups of individ-
uals making investment or portfolio choices when facing produc-
tion or financial opportunities that are exposed to uncertainty in
different ways. Alternatively, they may be forward-looking enter-
prises, making decisions today that have important consequences
for the future.

In summary, our methodology gives a way to extract infor-
mation on investor beliefs from asset market and survey data
pertinent for both external analysts and policymakers who are
looking for evidence to gauge private sector sentiments. In addi-
tion, our computations provide revealing diagnostics for model
builders that embrace specific formulations of belief distor-
tions as is common in the behavioral economics and finance
literatures.

Literature Review. There is a long intellectual history exploring
the impact of expectations on investment decisions. As was well
appreciated by economists such as in refs. (1–3), investment
decisions are in part based on people’s views of the future. Alter-
native approaches for modeling expectations of economic actors
were suggested including static expectations, ref. 4’s extrapola-
tive expectations, ref. 5’s adaptive expectations, or appeals to
data on beliefs; but these approaches leave open how to proceed
when using dynamic economic models to assess hypothetical
policy interventions. A productive approach to this modeling
challenge has been to add the hypothesis of rational expectations.
Motivated by long histories of data, this hypothesis pins down
beliefs by equating the expectations of agents inside the model to
those implied by the data-generating distribution. This approach
to completing the specification of a stochastic equilibrium model
was initiated by ref. 6 and developed fully in ref. 7.

Recently there has been a renewed interest in alternative
belief distortions within the asset pricing literature. See, for
example, refs. 8–12. Relatedly, since survey evidence on investor
beliefs is typically rather sparse and not able to produce entire
predictive distributions, refs. 13 and 14 fitted time series mod-
els to the observed beliefs that can be distinct from the actual
data evolution. Our approach is different from these literatures,
but complementary to them. We focus on the construction of the
implied bounds for expectations for functions of the stochastic
process of interest that could provide empirical targets of tests of
parametric models of subjective beliefs fitted to time series.

There is similarity in motivation and overlaps in the methods
we use to the study of robust optimization (see, for instance,
refs. 15 and 16) and robust Markov chain modeling (see, for
instance, ref. 17). But our is aim different. While the robust
optimization research features decision makers that confront
multiple probabilities, our perspective is that of analyst seeking
information about the beliefs of economic decision makers from

observed financial market data or survey data through the lens of
a dynamic economic model.

Refs. 18 and 19 describe and implement econometric methods
for confronting conditioning information under correct model
specification under rational expectations, within a generalized
method of moments framework. Refs. 20 and 21 give extensions
of the measure of model misspecification proposed by ref. 22
to accommodate conditioning information. Similarly, the mod-
els we consider are misspecified under rational expectations.
This misspecification is induced as it is in precursors (23, 24) by
investor belief distortions (these two papers abstract from the
role of conditioning information). Our innovation is to propose
and justify a dynamic formulation with belief uncertainty that 1)
accommodates conditioning and 2) uses the recursive structure
of multiperiod likelihoods to characterize families of beliefs that
are consistent with alternative divergence thresholds.

Outline of the Paper. 1. Asset Pricing with Distorted Beliefs intro-
duces the framework we use for moment restrictions implied
by an asset pricing model. 2. Data Generation and Probability
Divergence specifies the probabilistic environment that underlies
our computations and gives a dynamic version of the divergence
with a built-in recursive structure. 3. Moment Bounds presents
and justifies our recursive formulation of the functional equa-
tion used to compute the bounds along with some special cases
that are of particular interest. This section provides a more com-
plete characterization of the solution for the familiar relative
entropy divergence and discusses the relation to results from
large deviation theory. Finally, 3. Moment Bounds characterizes
a nonlinear expectation as a way to represent the bounds on
the subjective probabilities. 4. Illustration presents an empirical
illustration of our methodology. 5. Bounding Other Probabilities
shows how to apply our approach to extract information about
the one-period, risk neutral measure and the long-term counter-
part without assuming the existence of data on a complete set
of Arrow–Debreu securities. Both of these probability measures
are of interest in their own right. 6. Conclusions concludes.

1. Asset Pricing with Distorted Beliefs
In standard economic applications, moment conditions are justi-
fied via an assumption of rational expectations. This assumption
equates population expectations with those used by economic
agents inside the model. These expectations are therefore pre-
sumed to be revealed by the law of large numbers applied to time
series data.

Let (Ω,G,P) denote the underlying probability space and
I⊂G represent information available to investors. The original
moment equations under rational expectations are of the form

E [f (X , θ) | I] = 0, [1]

where the function, f , captures the parameter dependence, θ,
of either the payoff or the stochastic discount factor along with
a random vector, X , of variables observed by the econometri-
cian and used to construct the payoffs, prices, and the stochastic
discount factor.

A typical asset pricing example is as follows: Let R denote an
n-dimensional vector of gross returns corresponding to payoffs
on financial or physical assets over some investment horizon,
let S denote the corresponding stochastic discount factor for
this horizon, and let I denote the investor information set. The
stochastic nature of the stochastic discount factor captures the
market compensations for exposure to uncertainty.

The underlying asset pricing equation is

E[SR− 1n |I] = 0,

where 1n is an n-dimensional vector of ones. Both the stochastic
discount factor and the return vector R may depend on unknown
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parameters, giving rise to Eq. 1. The vector of returns can be
parameter dependent when the investment is in a physical asset
with an unobserved return. While we posed this as an asset-
pricing relation, restrictions of the same form can be derived
from investment or asset demand equations with potentially dif-
ferential exposures to uncertainty. Even in such models, there is a
counterpart to stochastic discount factors that are perhaps differ-
ent across agent types. More generally, these equations feature
the forward-looking behavior of individuals or enterprises as they
depend on the perceptions of the future.

A. Market Beliefs. We allow for the beliefs that are revealed by the
market to differ from the rational expectations beliefs implied by
(infinite) histories of data. We represent what we call “market
beliefs” by introducing a positive random variable N with a unit
conditional expectation. Thus, we consider moment restrictions
of the form

E [Nf (X , θ) | I] = 0. [2]

The random variable N provides a flexible change in the proba-
bility measure and is sometimes referred to as a Radon–Nikodym
derivative or a likelihood ratio. The dependence of N on random
variables not in the information captured by I defines a rela-
tive density that informs how rational expectations are altered
by market beliefs.

By using N to represent a potential market belief, we require
that any event that depends on the realization of X and has con-
ditional probability measure zero under the rational expectation
distribution will continue to have conditional probability zero
under this change in distribution. We will, however, sometimes
allow for N to be zero on events that have positive conditional
probability under the original measure, at least as a possible lim-
iting case. Such events would be a complete surprise to market
participants.

The introduction of N into the analysis is seemingly an innocu-
ous change in formulating the observable implications. But it has
rather dramatic consequences for econometric analyses. Specifi-
cally, we consider estimation environments in which a researcher
uses data only on a limited set of asset returns. With observations
on a complete set of asset returns and a prespecified stochastic
discount factor, we could identify uniquely the belief distortion,
N . Given our interest in macroeconomic risk compensation, we
presume a more modest set of data is available to use as empir-
ical inputs. As a consequence, even with a known stochastic
discount factor, there may be an extensive family of beliefs that
is consistent with the underlying pricing restrictions expressed as
conditional moments. To elaborate, we suppose that Eq. 1 may
not have solutions for any θ under rational expectations. Once we
relax rational expectations by introducing N , Eq. 2 will in general
be satisfied for an infinite-dimensional set of possible N s for each
value of θ. Thus, the parameter vector θ and the corresponding N
fail to be point identified in a rather spectacular way. The set of
N s associated with a given value of θ will be of particular interest
to us.

Given our interest in the set of N s, we are led to deduce
implied bounds on moments. Consider, for instance, the relation

E (NSR | I)− 1n = 0. [3]

Then the proportional risk premia from the perspective of the
altered probability are

logE (NR | I)+ 1n logE (NS | I).

The first term is the logarithm altered expectation of R and the
second term is the negative of the logarithm of the risk-free
return. Our methods allow us to compare the rational expec-
tations version of the risk compensations to bounds on these
proportional compensations as implied by market data.

Two classes of asset pricing models that have received consid-
erable attention provide motivation for our analysis. One class
allows for subjective beliefs to differ from those implied by ratio-
nal expectations because of “market psychology.” Alternative
models of expectations from behavioral finance imply alternative
specifications of N . Another class includes models with investors
that are ambiguity averse. Associated with many such models are
belief specifications that emerge as altered probabilities encoded
in asset prices. These distortions reflect some form of caution,
depending on modeling details. While both literatures derive
counterparts to N , our methods put very modest structure on
the beliefs beyond potentially small statistical departures from
rational expectations and can provide revealing diagnostics for
assessing models that impose specific distortions in expectations.

Since the form of our pricing equation applies to investment or
asset demand equations, there is a direct extension of our anal-
ysis to the case in which there are distinct classes of economic
agents with potentially different subjective beliefs or concerns
about ambiguity aversion.

B. Incorporating Survey Evidence. When constructing our moment
conditions, we could also include direct data on investor expec-
tations to help inform the direction and magnitude of the subjec-
tive belief distortion from historical evidence. This would entail
augmenting the moment conditions used to constrain beliefs to
include the variable being forecasted minus the observed forecast
all scaled by N .

Suppose we have data D on beliefs that reflect subjective
expectations of X̃ . These data could include survey responses or
analyst forecasts. We may include this in our analysis by imposing
the conditional moment condition:

E
(
NX̃ | I

)
=D . [4]

In words, this restriction says that D is the best forecast of X̃
under the subjective belief measure. Note that we can incorpo-
rate probabilistic forecasts into our framework by letting X̃ be
an indicator function.∗

Remark 1.1: Time series of survey data are often shorter rela-
tive to data on returns or macroeconomic variables. This can be
accommodated in our framework provided that there is sufficient
time series variation for these data to add nontrivial incremental
information to the analysis.

2. Data Generation and Probability Divergence
In this section we construct and use the dynamic counterpart to
the statistical divergence measure. We focus initially on relative
entropy as a measure of statistical divergence, a measure which
frequently arises in the analysis of large deviations of stochastic
processes with temporal dependence (see, for instance, refs. 27
or 28). While we use relative entropy as a starting point, we go
much farther by extending the so-called φ divergence measures
in ways that have a recursive structure that is very similar to that
of relative entropy.

While the applications that interest us use Markov formu-
lations, we relax this assumption to entertain non-Markov dis-
tortions. For this reason, we initially consider a stationary and

*See ref. 25 and the published comments for an overview and discussion of the use of
survey data in macroeconomics and ref. 26 for a probe into the impact of heterogeneity
in the study of overreaction.
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ergodic formulation that nests stationary, ergodic Markov pro-
cesses. This is the same environment used by ref. 29 to study
bounds on statistical efficiency and ref. 30 to study testable
implications of asset pricing models, both in the presence of
conditional moment restrictions. The ref. 30 analysis imposes
rational expectations in contrast to the analysis in this paper.

We start with a baseline probability triple (Ω,G,P) and a
measurable one-to-one transformation U which is measure pre-
serving and ergodic under P. We use U to construct stochastic
processes and filtrations.†

Let I0⊂G depict information available at date zero. We use
the transformation U to capture the information available at
future dates via the recursion

It =
{

Λ∈G :U−1Λ∈ It−1

}
=
{

Λ∈G :U−tΛ∈ I0

}
.

We presume that information accumulates,

It ⊂ It+1,

which in turn implies that {It :−∞< t <+∞} is a filtration.
Similarly, for any random variable B0 that is I0 measurable, we
form Bt recursively:

Bt(ω) =Bt−1 [U(ω)]=B0

[
Ut(ω)

]
.

Thus for each initial random vector B0, there is a correspond-
ing stochastic process {Bt : t ≥ 0} that is adapted to the filtration
{It : t ≥ 0}. Since U is measure preserving, the process {Bt : t ≥
0} is stationary.

A. Alternative Probabilities. In what follows, we hold fixed the
transformation U while considering alternative probability mea-
sures. Let Q denote an alternative probability distribution on
(Ω,G) that is measure preserving and ergodic, and let Qt be the
restriction of Q to It . We consider only Qs for which there exists
an N1≥ 0 that is I1 measurable and satisfies∫

B1dQ1 =

∫
E (N1B1 | I0)dQ0 [5]

for all bounded I1 measurable random variables B1. This N1 nec-
essarily satisfies E (N1 | I0)= 1. When Q is distinct from P, there
is a bounded random variable for which the Q and P distribu-
tions differ. Because both are ergodic, the law of large numbers
is applicable to both with distinct almost sure limit points. For
the purposes of this analysis, the probability measure Q encodes
the limits implied by the law of large numbers.‡

Form the product

MT =

T∏
t=1

Nt . [6]

Then under Q, the date-T conditional expectation of a bounded,
IT random variable BT is

E (MTBT | I0).

We think of MT as a relative likelihood between two models
over horizon T constructed recursively through the familiar like-
lihood factorization. We further restrict Q to imply stochastic
stability:§

†A common specification of U is the shift transformation applied to the space of infinite
sequences of vectors of real numbers.

‡From a measure-theoretic perspective, Q and P cannot be equivalent. There exist events
based on limits for which Q assigns probability one and P assigns probability zero and
conversely.

§Stochastic stability as defined here is satisfied when the process is beta mixing (or
absolutely regular); see, e.g., theorem 3.29 in ref. 31.

Definition 2.1: We say that Q induces stochastic stability if for
any B0 that is I0 measurable and satisfies

∫
|B0|dQ0<∞,

lim
T→∞

E (MTBT | I0) =

∫
B0dQ0.

Definition 2.2: The set N contains all N1s for which there is a
corresponding probability Q satisfying Eq. 5 and is stochastically
stable.

We presume that N1 = 1 is in this set and hence P is
stochastically stable.

B. Intertemporal Divergences. First consider the Kublack–Leibler
divergence. Represent the expected log-likelihood ratio as a sum
of contributions for each date by using the recursive structure of
a relative likelihood:

E (MT logMT | I0) =E

(
MT

T∑
t=1

logNt

∣∣∣∣ I0

)
≥ 0.

Dividing by T and taking limits gives

R(N1) = lim
T→∞

1

T
E (MT logMT | I0)

= lim
T→∞

1

T
E

(
MT

T∑
t=1

logNt

∣∣∣∣ I0

)

=

∫
E (N1 logN1 | I0)dQ0,

which is the measure of relative entropy that we will use in our
analysis. Note that there is an explicit connection between N1

and Q0, which gives rise to a restriction that we impose when
computing bounds.
Remark 2.3: The relative entropy measureR(N1) is the discrete-
time analog to the relative entropy measure that is used in the
Donsker–Varahadan large deviation theory applied to Markov
processes [see refs. 28, 32, and 33 (chap. 3)].

Finite relative entropy restricts substantially the tail behav-
ior of the probability distributions. For this reason we consider
other divergences, but modified to exploit the recursive struc-
ture implied by the likelihood factorization. We use the condi-
tional version of what is commonly called a φ divergence as an
important building block:

E [φ(Nt) | It−1]

for a strictly convex function φ defined on (0,∞) with φ(1) = 0.¶

There is an equivalent way to represent this divergence that we
use. Construct a function ψ such that

nψ

(
1

n

)
=φ(n).

It may be shown that ψ is also strictly convex with ψ(1) = 0. By
design,

E [φ(Nt) | It−1] =E
[
Ntψ

(
1

Nt

) ∣∣∣∣ It−1

]
. [7]

On the right-hand side, we use the conditional probability asso-
ciated with Nt to compute expectations. The random variable
1
Nt

is the Radon–Nikodym derivative of the baseline conditional

¶For some φ divergences the domain can be extended to include zero.
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probability with respect to the Nt conditional probability distri-
bution. The function ψ in Eq. 7 plays a role analogous to φ once
we change the probability we use in the expectation.

We use ψ to represent an intertemporal divergence measure:

R(N1) = lim
T→∞

1

T

T∑
t=1

E (Mt−1E [φ (Nt)| It−1]| I0)

= lim
T→∞

1

T

T∑
t=1

E
[
Mtψ

(
1

Nt

) ∣∣∣∣ I0

]

= lim
T→∞

1

T
E

[
MT

T∑
t=1

ψ

(
1

Nt

) ∣∣∣∣ I0

]
. [8]

The limiting version of this measure as implied by the law of large
numbers for stationary, ergodic processes is∫

E
[
N1ψ

(
1

N1

) ∣∣∣∣ I0

]
dQ0 =

∫
E [φ(N1) | I0]dQ0.

Note that we use the conditional version of what is commonly
called a φ divergence measure averaged using the altered sta-
tionary probability Q. This coincides with the relative entropy
divergence when φ(n) =n log n . SI Appendix, section A shows
that this intertemporal divergence extension of φ divergence is
convex.

Alternatively, there has been considerable interest in members
of the Wasserstein class of divergences, including in the study of
robust Markov chains and machine learning. Wasserstein diver-
gences could also be used as conditional divergences that are
averaged using the altered stationary probability Q.#

Remark 2.4: Empirical likelihood methods (35, 36) use a diver-
gence measure φ(n) =− log n for independent and identically
distributed data. The corresponding intertemporal divergence
measure is

E (− logN1). [9]

Note that this measure uses the original baseline probability
measure implied by P0 and not Q0 to average over the condition-
ing information. Were we to average using Q0 in the divergence,
then our analysis would apply. Elsewhere, we and others have
argued that this strictly decreasing φ is not well suited for detect-
ing departures from baseline probabilities restricted by moment
conditions.
Remark 2.5: Using positive random variables, MT , to depict
alternative probabilities for date-T events imposes absolute con-
tinuity (conditioned on date-zero information). As we already
noted, this same absolute continuity will not be true over the
infinite future, however. Our division by T when constructing
intertemporal divergence Eq. 8 allows for the altered probability
to have different limits under the law of large numbers.
Remark 2.6: Our analysis assumes that the underlying processes
are stationary under the alternative Qs. However, the results
we obtain will still apply under certain classes of nonstation-
arity processes. While we restrict Q to be measure preserving
and ergodic, any probability measure that is absolutely contin-
uous with respect to Q will obey the same laws of large numbers
even though it may not be measure preserving. Such measures
may also imply the same intertemporal divergence measure Eq.
8. Moreover, specific examples that could be of interest are
probabilities associated with Markov processes that eventually
“escape” from their dependence on the initialization. While we

#For example, see ref. 34. Ref. 34 deduces a Laplace principle for large deviation the-
ory and other approximations with an overlapping class of intertemporal divergences.
While ref. 34 poses a problem that is mathematically related, the formulation does not
nest ours.

do not explore such cases formally, these observations suggest
that the bounds that we compute could be justified under an even
broader set of probability measures.

3. Moment Bounds
We next present the recursive approach we use for computing
probability bounds. To represent these bounds, we entertain a
rich family of functions g and compute sharp lower bounds on
the expectation g(X1). As a special case, g(X1) could be an indi-
cator of an event with its expectation being the probability of
that event. We will be interested in other choices of g in our
empirical illustration. We compute an upper bound on g(X1)
by finding the negative of the lower bound on the expectation
−g(X1). Formally, we are interested in solving

inf
N1∈N

∫
E
(
N1g(X1)

∣∣∣∣ I0

)
dQ0

subject to the constraints

R(N1)≤κ
E[N1f (X1) | I0] = 0.

To compute a bound for a given choice of g , we will borrow an
idea from the robust control literature. See, for instance, refs.
15 and 37. We will initially solve a problem with a discrepancy
penalty indexed by a parameter ξ > 0 and show how to solve a
problem given ξ. We will then treat ξ as a Lagrange multiplier
and trace out the implied discrepancies for each such ξ. In this
way, ξ may be chosen to enforce the constraint R(N1)≤κ. For
notational simplicity we suppress the parameter dependence in
the moments of f (Xt) and g(Xt).

In much of what follows, we aim to solve the following:

Problem 3.1.

µ∗= inf
N1∈N

lim
T→∞

1

T
E

(
MT

T∑
t=1

[
g(Xt) + ξψ

(
1

Nt

)] ∣∣∣∣ I0

)

= inf
N1∈N

∫
E
(
N1

[
g(X1) + ξψ

(
1

N1

)] ∣∣∣∣ I0

)
dQ0

subject to E [N1f (X1) | I0]= 0.
It suffices to optimize over N1 because this choice determines

the Nt for all t ≥ 1 through the transformation Ut−1 and MT as
constructed in Eq. 6.

A. Martingale Construction.. While we solve Problem 3.1 via recur-
sive methods, as a precursor to this, we use a convenient martin-
gale construction used in connection with the objective function.
Suppose that for N1 ∈N , we find a random variable v0 such that

E
(
N1

[
g(X1) + ξψ

(
1

N1

)
−µ+ v1

] ∣∣∣∣ I0

)
− v0 = 0, [10]

where

µ=

∫
E
(
N1

[
g(X1) + ξψ

(
1

N1

)] ∣∣∣∣ I0

)
dQ0,

and where v1(ω) = v0[U(ω)] and v0 is I0 measurable. Then
iterating on Eq. 10, it follows that

E

(
MT

T∑
t=1

[
g(Xt) + ξψ

(
1

Nt

)
−µ
] ∣∣∣∣ I0

)
+E (MTvT | I0)− v0 = 0.

33134 | www.pnas.org/cgi/doi/10.1073/pnas.2019910117 Chen et al.
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In fact,

T∑
t=1

[
g(Xt) + ξψ

(
1

Nt

)]
−Tµ+ vT − v0

is a martingale under the probability measure Q with expectation
zero. Moreover,

v0−
∫

v0dQ0 [11]

= lim
T→∞

E

(
MT

T∑
t=1

[
g(Xt) + ξψ

(
1

Nt

)
−µ
] ∣∣∣∣ I0

)

provided that the almost sure limit on the right-hand side is
finite. The random variable vo is in fact well defined only up to a
constant translation. Our recursive approach will simultaneously
solve for v0 used in the martingale construction and µ computed
at the minimizing solution for N1.

B. Recursive Formulation. We use a rearranged version of Eq.
10 when posing the recursive formulation of the optimization
problem.

Problem 3.2. Find a pair (µ, v) that satisfies

µ= inf
N1∈N

E
(
N1

[
g(X1) + ξψ

(
1

N1

)
+ v1

] ∣∣∣∣ I0

)
− v0

subject to the constraint

E [N1f (X1) | I0] = 0,

where v1(ω) = v0[U(ω)] and v0 is I0 measurable and µ is a finite
number. This optimization problem determines the constant µ and
the random variable v0 up to a translation by a constant.

This problem is recognizable as a fixed point problem in (µ, v0)
captured by the relation between v1 and v0. While we posed
this problem in terms of date zero and date one, given our
presumed stationary data generation the problem could equiv-
alently be stated in terms of date t and date t + 1 for t > 0. The
minimization over N1 can be solved using convex duality meth-
ods familiar from the analysis of φ divergence measures. We let
(µ∗, v∗0 ) denote the solution to Problem 3.2 and N ∗1 be the cor-
responding minimizer. The following objects are of interest from
this problem:

• the moment bound,
∫
E [N ∗1 g(X1)|I0]dQ∗0;

• the corresponding conditional moment, E [N ∗1 g(X1)|I0];
• the implied divergence,∫

E [φ(N ∗1 ) | I0]dQ∗0 =

∫
E
[
N ∗1 ψ

(
1

N ∗1

) ∣∣∣∣ I0

]
dQ∗0,

where N ∗1 solves Problem 3.2 and Q∗0 is an implied stationary
distribution.‖

There are three features of Problem 3.2 that require
further comment. First, the minimization problem includes
“continuation-value” adjustments depicted by v0 and its next
period counterpart v1 along with the numerical value µ. We
include these adjustments to account for the fact that the choice
of N1 has implications for future time periods. Second, limit
Eq. 11 is not finite for all measure-preserving and ergodic
probabilities measures Q. For the minimum to be attained, we

‖In contrast to our analysis, ref. 38 incorporates conditioning information to identify a
subjective belief by minimizing the divergence given in Eq. 11 under P.

presume that this limit is finite at the minimizing solution. Third,
ξE
(
N1ψ

(
1
N1

)
| I0

)
acts as a per-period divergence penalty, but

we may equivalently think of ξ as a Lagrange multiplier and sub-
sequently maximize over ξ. Thus, we use ξ to index alternative
problems that penalize the increment to the intertemporal diver-
gence. The value µ∗ of this objective depends on ξ, leading us
to write µ∗(ξ). To impose a specific divergence constraint κ, we
solve

sup
ξ>0

µ∗(ξ)− ξκ [12]

= sup
ξ>0

∫
E
(
N ∗1

[
g(X1) + ξψ

(
1

N ∗1

)
− ξκ

] ∣∣∣∣ I0

)
dQ∗0.

Alternatively, we can back out the implied κ for each ξ by
computing the derivative dµ∗

dξ
or by computing directly the diver-

gence associated with N ∗1 . To determine the ξ sensitivity, many
versions of the optimization problem could be solved in par-
allel using convex duality and dynamic programming methods.
The computed bound µ∗(ξ∗) is for the unconditional expec-
tation of g(X1), although we find the conditional expectation,
E [N ∗1 g(X1) | I0] that is a central part of the calculation, to be
of interest in its own right. Finally, limξ→∞ µ

∗(ξ)/ξ reveals the
minimum possible divergence subject to the conditional moment
restrictions. This limit gives a lower bound on magnitude of κ
used in our analysis. It can be computed directly by solving a
counterpart to Problem 3.2.

C. Nonlinear Expectation. Consider now the set B of bounded
Borel measurable functions g to be evaluated at alternative real-
izations of the random vector X1. Given a divergence bound κ,
we construct a mapping K from functions g in B into the real line
that assigns the computed bound. Formally, define

K(g) =

∫
E [N ∗1 g(X1)|I0]dQ∗0,

where the right-hand side is computed using the value of ξ that
solves Eq. 12. This mapping can be thought of as a nonlinear
expectation, as formalized in the following proposition:

Proposition 3.3. The mapping K :B→R given by
∫
E[N ∗1 g(X1)|I0]

dQ∗0 implied by Problem 3.2 for each g ∈B has the following
properties**:

1) If g2≥ g1, then K(g2)≥K(g1);
2) if g is constant, then K(g) = g ;
3) K(rg) = rK(g), for a scalar r≥ 0;
4) K(g1) +K(g2)≤K(g1 + g2).

All four properties follow from the definition of K. Property 4
includes an inequality instead of an equality because we compute
by solving a minimization problem, and the N1s that solve this
problem can differ depending on g .
Remark 3.4: While K(g) gives a lower bound on the expectation
of g(X ), by replacing g with −g , we construct an upper bound
on the expectation of g(X ). The upper bound will be given by
−K(−g). The interval

[K(g),−K(−g)]

captures the set of possible values for the distorted expectation
of g(X ) consistent with divergence less than or equal to κ.

**The first two of these properties are taken to be the definition of a nonlinear expec-
tation by ref. 39. Properties (3) and (4) are referred to as “positive homogeneity” and
“superadditivity.”
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Remark 3.5: In our statement of Problem 3.2, we suppressed the
dependence of the function f on an unknown parameter vector
θ in a parameter space Θ. But many applications will necessarily
include parameter uncertainty. Provided that we can compute
the solution to this problem quickly using duality, we can assess
parameter sensitivity by perhaps solving this problem many times
in parallel. Bounds that are robust to parameter sensitivity could
be obtained by minimizing over the set Θ or over a family of
probability distributions over Θ.
Remark 3.6: For some applications, it is of interest to bound
ratios of expectations of functions g1 and g2 of X1. Expectations
conditioned on discrete events are such ratios and proportional
risk compensations are logarithms of such ratios. As we elabo-
rate in SI Appendix, section E, bounds of ratios can be computed
by first bounding expectations of g1(X1)− ζg2(X1) for alterna-
tive choices of the real number ζ and then searching over ζ for
the smallest ratio.

D. Dual Problem. We show that the dual problem for the rela-
tive entropy divergence is equivalent to a principal eigenvalue
problem. This gives a representation of the distorted measures
that underlies the bounds and a revealing link to large deviation
theory.

By a direct application of duality for φ(n) =n log n ,

µ+ v0

= max
λ0

−ξ logE
(

exp

[
−1

ξ
g(X1) +λ0 · f (X1)− 1

ξ
v1

] ∣∣∣∣ I0

)
,

where the random vector λ0 is restricted to be I0 measurable
and is the vector of Lagrange multipliers for the conditional
moment restriction. See SI Appendix, section C for a more com-
plete development of the primal and the dual problems. Let ε=

exp
(
−µ
ξ

)
and e0 = exp

(
− v0

ξ

)
. Then an equivalent statement of

the dual problem is

ε= min
λ0

E
(

exp

[
−1

ξ
g(X1) +λ0 · f (X1)

](
e1
e0

) ∣∣∣∣ I0

)
.

In this optimization problem λ0 is again restricted to be a I0

measurable random vector and e0 is restricted to be positive as is
the real number ε.

When the state space is not discrete, this eigenvalue problem
can have multiple solutions. While there could be multiple solu-
tions to this eigenvalue problem, the next result identifies the
eigenvalue of interest.

Lemma 3.7. When there are multiple positive eigenvalue solutions
for a given λ0, at most one of them induces a probability measure
that is stochastically stable.

See SI Appendix, section B for a proof.††

Proposition 3.8. Problem 3.2 with φ(n) =n log n can be solved by
finding the answer to

ε= min
λ0

E
(

exp

[
−1

ξ
g(X1) +λ0 · f (X1)

](
e1
e0

) ∣∣∣∣ I0

)
,

where

µ=−ξ log ε

v0 = − ξ log e0.

††Relatedly, ref. 40 proves a counterpart to this result for continuous-time specifications
in a Markovian environment. Moreover, ref. 41 extends the ref. 40 analysis by, among
other things, relaxing the Markov assumption.

In this optimization problem, the random vector λ0 is restricted to be
a I0 measurable random vector, the random variable e0 is restricted
to be I0 measurable and positive, and e1(ω) = e0[U(ω)] with prob-
ability one. The real number ε is positive. The implied solution for
the probability distortion is

N ∗1 =
exp

[
− 1
ξ
g(X1) +λ∗0 · f (X1)

]
e∗1

ε∗e∗0
,

where λ∗0 is the optimizing choice for λ0 and (ε∗, e∗0 ) are selected so
that the resulting Q∗ induces stochastically stability. The conditional
expectation implied by the bound is

E [N ∗1 g(X1) | I0],

which in turn implies a bound on the unconditional expectation
equal to ∫

E [N ∗1 g(X1) | I0]dQ∗0.

The implied relative entropy is∫
E (N ∗1 logN ∗1 | I0)dQ∗0.

Remark 3.9: Our characterization is reminiscent of the results
from large deviation theory for Markov processes. As in our
analysis, large deviation theory studies an undiscounted limiting
problem. See, for instance, refs. 28 and 32 for valuable treatises
on large deviation theory.‡‡

A more substantive link to large deviations helps us interpret
the relative entropy bounds that we input into our analysis. When
using the empirical probability to detect potential departures
from the baseline model, there is typically a positive probability
that the empirical distribution mistakenly detects a departure.
For a fixed criterion, the probability of this mistake becomes
increasingly small as the sample size gets large with a well-
defined rate characterized by large deviation theory. Under some
additional regularity conditions, remarkably, the decay rate can
be made to be arbitrarily close to the minimum relative entropy
bound that we compute. Moreover, this theory computes excur-
sions, represented probabilistically, that make the decay rate as
small as possible. See SI Appendix, section D for an elaboration.

While we draw on insights from large deviation theory, our
ultimate aim is quite different from that theory. Nevertheless, we
find it revealing to compute both relative entropies and related
Chernoff entropy as described, for instance, in refs. 42 and 43 as
part of a sensitivity analysis.

E. Markov Specification. To proceed in a tractable way, we impose
Markovian restrictions on the underlying data-generating pro-
cesses. Specifically we presume that {Xt : t ≥ 0} is a time-
invariant function of Markov process, appropriately restricted.

Assumption 3.10. {(Xt ,Zt) : t = 0, 1, . . . .} is a first-order Markov
process for which the joint distribution of (Xt+1,Zt+1) conditioned
on (Xt ,Zt) depends only on Zt .

Given this assumption, the {Zt} process by itself is a first-order
Markov process. We view both Xt and Zt as observable. The tri-
angular structure for the dynamic evolution allows us to use a
more sparse representation of the conditioning information. The
alternative probabilities that we explore are not restricted to be
Markov, but the solution to the minimization problem will be, for

‡‡In particular, the analysis in ref. 28, chaps. 7 and 8 features discrete-time Markov
specifications and large sample approximation in the formulation of a Laplace
principle.
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reasons that are familiar from dynamic programming. With the
Markov specification, we solve the recursion.

Problem 3.11. Find a pair (µ, v) that solves

µ+ υ(z )

= min
N1∈N

E
(
N1

[
g(X1) + ξψ

(
1

N1

)
+ υ(Z1)

] ∣∣∣∣ Z0 = z

)
subject to the constraint

E [N1f (X1) |Z0 = z ] = 0.

This optimization problem determines the constant µ and the
random variable υ up to a translation by a constant.

While the primal problem “imposed” stochastic stability, it
suffices to verify the stability of the process that we obtain
as our candidate solution. Since it is Markovian, this restric-
tion is satisfied when the process {Zt} is aperiodic and Harris
recurrent.

4. Illustration
We illustrate these methods using a familiar asset pricing model
with recursive utility investors as in refs. 44 and 45. While much
of the asset pricing literature appeals to an arguably large risk
aversion in conjunction with rational expectations when con-
fronting data, we constrain risk aversion and instead explore
belief distortions as an alternative expectation. We follow ref. 46
by allowing for market segmentation and avoid the direct use of
consumption data. We then ask what implications asset market
data have for predicted consumption growth rates.

Much of the macroasset pricing literature imposes risk aver-
sion that is arguably large at least for some states of the
macroeconomy. Refs. 47 and 48 give alternative rationales for
substantially restricting the risk aversion coefficient. While we
do not view as a settled issue what precise bounds should be
imposed on risk aversion, we assume a unit risk aversion to fea-
ture the role of belief distortions when confronting asset pricing
evidence. Our choice of unity is admittedly for convenience. As
we will see, this choice leads to some particularly simple asset
pricing implications.

Let Rw
t denote a presumed observable return on wealth. As

noted by ref. 45, the one-period stochastic discount factor under
rational expectations is the reciprocal of the gross return on
wealth when risk aversion is unity. Thus, under distorted beliefs
represented by Nt ,

St =Nt(R
w
t )−1,

where St is the one-period stochastic discount factor under
rational expectations. We use this setup for our illustration.

As ref. 45 notes, the consumption Euler equation for an
investor implies

E [Nt logRw
t | It−1] = − log β+ (1− ρ)E [Nt logGt | It−1]

where Gt is the ratio of consumption growth over two adja-
cent time periods.§§ The parameter β is the subjective discount
factor, and ρ is the reciprocal of the intertemporal elasticity
of substitution. By deducing bounds on the left-hand side, we
may infer bounds on ρ times the market expectation of con-
sumption growth of equity market participants expressed in
logarithms. Recursive utility preferences are specified in terms
of continuation values that determine the rankings of prospective
consumption processes. As a rough approximation, when ρ< 1,

§§See equations 17 and 18 of ref. 45 except that we allow for more general
expectations.

the wealth is positively related to the continuation value, where
both are relative to current consumption. Conversely, they are
negatively related when ρ> 1. Thus, for this model of investor
preferences, whether ρ is larger or smaller than one impacts how
we interpret the evidence based on conditioning information.

In our illustration, we draw on the literature that suggests
returns can be predicted from dividend–price ratios. While there
have been debates on how fragile this evidence is, we step aside
from that discourse and take the predictability evidence at face
value to illustrate our method. Given our direct use of dividend–
price measures, we purposefully choose a very coarse condition-
ing of information and split the dividend–price ratios into three
bins using the three empirical terciles. We take the dividend–
price terciles to be a three-state Markov process. Dividend–price
ratios are known to be persistent, and this will be evident in our
calculations.¶¶

We implement our approach using quarterly data from 1954 to
2016. We use the return on the CRSP (Center for the Research
on Security Prices) value-weighted index to proxy for the return
on wealth. For asset returns, we use the return on a 3-mo treasury
bill and the three Fama–French factor excess returns. We impose
moment conditions for each return implied by Eq. 3, each scaled
by three indicator functions for the terciles of the dividend–price
ratio, giving a total of 12 moment conditions. All returns are
converted from nominal to real returns using the deflator for
nondurables consumption obtained from the Bureau of Labor
Statistics. We then apply the methods described in 3. Moment
Bounds to bound functions of the return on wealth as measured
by the value-weighted return.

In Fig. 1, we report the bounds on the beliefs about the
expected log return, which under the assumption of the unitary
risk aversion coefficient are approximately proportional to the
consumption growth rate belief when the subjective discount fac-
tor β is very close to one. The conditional expectation of log
returns and the unconditional counterpart are all lower than
their empirical counterparts. This observation follows by com-
paring the •s with the boxes in Fig. 1, where the top and bottom
of the boxes are the upper and lower bounds with a relative
entropy constraint imposed at a magnitude that is 20% higher
than the minimum. The minimum relative entropy rate implies
a half-life of about 24 quarters for reducing the probability by
50% of mistakenly rejecting the rational expectations. Increas-
ing this by 20% reduces the half-life by the same percentage to
about 20 quarters.## While our choice of a 20% increase is a bit
arbitrary and used for illustration purposes, it is straightforward
to compute bounds with other choices of divergence thresholds.
Across alternative applications, a choice of 20%, independent of
magnitude of the minimal possible divergence, would be hard to
defend. One nice aspect of relative entropy is that there is an
explicit statistical interpretation that we find to be revealing, and
thus the magnitude of the divergence has meaning.

Interestingly, it is when we condition on the low value of the
dividend–price ratio that we find the box with the largest height
(biggest difference between the upper and lower bounds). Also,
the bounds on the unconditional distorted expectations are very
similar to those we found for the low dividend–price ratio. As a
robustness check, we repeated these calculations for a quadratic

¶¶As an alternative starting point, we could use the regime probabilities from Markov
switching models of ref. 49 as possible states along with the implied return
distributions.

##The Chernoff entropy at the minimum is 0.0096 with a half-life of 72 quarters. The
Chernoff measure is motivated by a common decay rate imposed on type I and type II
errors of testing one model against another and is expected to be considerably smaller.
We computed it using the approach described in ref. 42 for Markov processes. While
symmetric, this measure is less tractable to implement and not included in the family of
recursive divergences that we describe. We use it merely to provide, ex post, additional
information about the magnitude of the bound.
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Fig. 1. Expected log market return. The •s are empirical averages and the
boxes give the imputed bounds when we inflated the minimum relative
entropy by 20%. The minimum relative entropy is 0.0284 with a half-life of
24.4 quarters.

conditional divergence and found only very modest differences
(SI Appendix, section F).

Not only are conditional means distorted, but so are the tran-
sition probabilities as reported in Table 1. While the implied sta-
tionary probabilities are fairly evenly distributed over the three
dividend states, essentially by construction, the minimal entropy
probabilities down-weight substantially the high dividend–price
ratio state and up-weight the low dividend–price state. The high
dividend–price state, in particular, has a very small stationary
probability under the minimum distorted stationary distribution.
Consistent with this, the transition probabilities into this state
are lower under the distortion and they are higher for exiting this
state. The opposite happens for transitions in and out of the low
dividend–price state. Thus, a hypothetical process that behaves
in accordance with the minimum entropy distorted Markov tran-
sition matrix is likely to spend substantially more time in the low
expected log-return state and much less time in the high expected
log-return state. When we increase the relative entropy bound by
20%, the implied distorted transition matrices are quite similar
to the implied transition matrix recovered by the minimizing rel-
ative entropy and depart from the empirical transition matrix in
comparable ways.

An alternative approach would be to solve static versions
of our analysis for each of the three different specifications
of the conditioning information. Under this approach, there
would be no reason for distorting the transition probabilities
as the dynamical evolution of the conditioning information is
ignored. Not surprisingly, this approach does lead to notable dif-
ferences in bounds. The minimized entropy over the alternative
configurations of the conditioning information using the undis-
torted transition probabilities is 0.047 in comparison to the much
smaller 0.028 that we found using our method. We view belief
distortions in the transition probabilities are of particular inter-
est in behavioral models and in models with ambiguity aversion
and see this as a virtue over methods that analyze the conditional
problems separately.

As we mentioned at the outset of this section, there is a
substantial asset pricing literature that studies time-varying risk
compensation, often appealing to high values of risk aversion.
We illustrate how belief distortions can imitate large risk com-
pensations. Thus, consider the bounds on the implied risk com-
pensations when we restrict the risk aversion parameter to be
one. We report proportional risk premium using the ex post real
return on treasury bills, Rf , as our riskless benchmark in Fig. 2.
To construct these results, we compute bounds on logERw −

logERf by extending the approach of 3. Moment Bounds as
described in SI Appendix, section E. Restricting investor risk
aversion allows for belief distortions to capture the fluctuating
empirical compensations for exposure to uncertainty.

Finally, since our empirical method looks at other informa-
tion from two other Fama–French excess returns, we also report
bounds on other risk compensations that we included in our anal-
ysis. We convert the excess returns into returns by adding the
gross returns on bonds. We report these findings in SI Appendix,
section E. Again, the risk compensations are greatly reduced rel-
ative to the empirical counterpart, and in most instances they are
less sensitive to conditioning information.

Putting aside the empirical debate on return predictability, we
see two possible conclusions from these results. One possibility is
that the statistical divergence (measured as relative entropy) for
the distortions is high enough to challenge a bounded rationality
view of the recursive utility model with a unitary risk aversion.
The other possibility is that this divergence is defensible, in
which case our dynamic implementation reveals the most statisti-
cally plausible distortions on the evolution of the dividend–price
ratios. It remains a judgment call as to when the resulting sta-
tistical bounds we find here are implausible. Researchers that
embrace rational expectations do not consider belief distortions,
while behavioral finance researchers seldom consider the implied
statistical divergence of their modeled beliefs. Neither practice
uses tools for assessing statistical approximation as we have done
in this paper. We view these computations as providing a valu-
able empirical complement to the assessment of specific models
of belief distortions or ambiguity aversion. Moreover, we have
noted how survey evidence can be included within our frame-
work, and we view this as a potentially valuable extension of the
illustration presented here.

5. Bounding Other Probabilities
We have motivated our analysis as a method for extracting expec-
tation bounds for subjective beliefs or restricted “worst-case”
beliefs that support valuation under ambiguity aversion. These
same methods provide expectation bounds for two other prob-
ability measures that are of interest in asset valuation. These
measures are the one-period risk-neutral probabilities and the
long-term forward probabilities. While surveys cease to provide
information about these probabilities, even sparsely observed
asset values, as we assume here, are revealing. We now comment
on how to apply our method for both of these applications.

A. Risk-Neutral Measure. Under risk-neutral pricing, the recipro-
cal of the gross one-period riskless return acts as a stochastic
discount factor. Thus, in this case,

NtSt =Nt(R
f
t )−1.

Refs. 50–52 target the Nt s with the smallest relative entropy
divergence to use in pricing derivative claims. We map this type
of problem into our analysis by viewing the empirically relevant
distribution as the “correct distribution” and the risk-neutral
transformation as a way to correct for model misspecification. As
in refs. 51 and 52, the measures of particular interest to us are the

Table 1. Empirical and distorted transition probabilities

Empirical Minimum entropy

Transition matrix

0.96 0.04 0
0.05 0.88 0.07
0 0.08 0.92


0.98 0.02 0

0.08 0.88 0.04
0 0.17 0.83


Stationary probabilities

[
0.42 0.31 0.27

] [
0.76 0.20 0.04

]
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Fig. 2. Proportional risk compensations computed as logERw − log ERf

scaled to an annualized percentage. The •s are the empirical averages and
the boxes give the imputed bounds when we inflated the minimum relative
entropy by 20%.

ones with a small divergence, although we explore more proba-
bilities than just the Nt with the minimal divergence. While not
our primary motivation, the methods we develop in this paper
allow the user to obtain robust bounds on risk-neutral expecta-
tions of macroeconomic variables that incorporate information
embedded in asset prices.

B. Long-Term Forward Measure. A substantively distinct, but math-
ematically related, literature studies the martingale decompo-
sition of the stochastic discount factor. This decomposition
expresses the stochastic discount factor as the product of a
martingale component and a transitory component. The martin-
gale component can be interpreted as a change of probability
measures that imposes risk neutrality in valuation over long
investment horizons. Refs. 53 and 54 show that the reciprocal
of the gross holding-period return on a long-term bond is the
stochastic discount factor net of a martingale component.

Since the work of ref. 54, the martingale component is referred
to as the permanent component to the cumulative stochastic dis-
count factor process. In providing a more formal mathematical
characterization, refs. 40 and 41 find it more revealing to appeal
to probabilistic characterization of this component. As empha-
sized by ref. 55, the probability measure associated with the
martingale absorbs long-term risk adjustments for stochastically
growing cash flows. This probability measure is the risk-neutral,
forward measure that captures long-term risk–return tradeoffs.

Many structural models of asset pricing have stochastic dis-
count factor processes with martingale components that dom-
inate risk prices over long investment horizons. These compo-
nents can reflect permanent shocks to the macroeconomy or
forward-looking components to valuation. These components
are present when investors have recursive utility preferences in
which the intertemporal composition of risk matters or when
they are averse to ambiguity in assigning probabilities to future
events.

To relate this to our analysis, suppose that this martingale
component is missing from the model specification. In such cir-
cumstances, ref. 53 justifies the use of the reciprocal of the gross
holding-period return on a long-term bond, Rh

t , as the stochastic
discount factor: St = (Rh

t )−1. When there is a martingale com-
ponent, ref. 54 advocated bounding its magnitude by, in effect,
using this return reciprocal as a misspecified stochastic discount
factor. For this application, we use

St =Nt(R
h
t )−1

as the stochastic discount factor where Nt ≥ 0 has conditional
expectation equal to one and thus induces a change of a probabil-
ity measure that absorbs long-term risk adjustments. Our method
applied to this problem complements and extends those of refs.
54 and 56 by providing bounds on expectations implied by this
measure.
Remark 5.1: Ref. 57 gives conditions under which investor beliefs
can be uniquely identified from asset prices. This identification
hinges on a complete panel of state prices being available to
the econometrician, as well as an implicit restriction that the
stochastic discount factor process does not contain a martingale
component. This latter restriction is violated in many standard
asset pricing models (see ref. 55 for a discussion). More gen-
erally this identification reveals a forward probability measure
that absorbs long-term growth rate risk. Our approach avoids the
requirement of a complete set of state prices and can be used
to identify sets of long-term forward probabilities that are con-
sistent with asset pricing model restrictions and within a small
deviation of rational expectations.

6. Conclusions
In this paper, we developed methods designed to extract infor-
mation on investor beliefs from data on asset prices and investor
surveys. Our approach presumes an econometric model of
investors or enterprises that could be misspecified under rational
expectations. We illustrated how limiting the statistical discrep-
ancy between investor beliefs and rational expectations implies
bounds on investors’ expectations. Formally, we represented
this relationship through a nonlinear expectation function and
derived its dual representation.

Going forward, we see two types of applications of our
methods. Deducing market expectations about the future from
forward-looking asset prices is a common practice in both the
public and private sectors. But this is typically done either infor-
mally or by targeting so-called risk-neutral probabilities that
confound beliefs and risk preferences. Our method provides a
formal way to compute and represent information on investor
beliefs constrained by a model of risk aversion along with a
measure of statistical divergence.

Alternatively, we could use our approach to provide diag-
nostics for model misspecification under rational expectations.
The bounds we deduce will help assess alternative models of
subjective beliefs or ambiguity aversion. Implied belief bounds
for small or moderate restrictions on the statistical divergence
can give suggestive results for model builders as to how to
repair potentially misspecified models. By comparing models of
subjective beliefs or ambiguity aversion supported by belief dis-
tortions to the implied bounds, applied researchers could assess
whether such departures from rational expectations could be
easily discerned from limited data.

Future applications of our methodology could incorporate
information from survey data on investor beliefs. One approach
would be to include survey data directly as additional moment
conditions when constructing expectation bounds. Another
approach would be to compare survey-implied expectations to
expectation bounds on the corresponding variables formed with-
out using the survey data as information. The latter approach
would provide a check on how plausible the survey data are as a
representation of investor beliefs used in decision making.

While we focused on constraining probabilities based on
intertemporal measures of divergence, these bounds could be
used formally in the design of economic policy. For instance, refs.
58 and 59 pose dynamic policy problems in which a government
policymaker fails to have precise knowledge of the beliefs of the
private sector when designing a prudent course of action. While
these papers explore what impact this imprecision could have
on policy, our work looks more systematically at how to extract
credible information about the beliefs.
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Data Availability. Computer code and computations with standard data
sources have been deposited in Github at https://github.com/lphansen/
Beliefs with computational details on the implementation. All study data
are included in this article and SI Appendix.
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